trading-algo/PROJECT_OVERVIEW.md
Gal Podlipnik 69462cf3e0 first
2025-07-17 02:30:21 +02:00

142 lines
4.1 KiB
Markdown

# Project Setup Complete! 🎉
## What You Now Have
**Professional Trading System Structure**
- Modular, maintainable, and scalable architecture
- Clear separation of concerns (data, strategy, risk, execution)
- Comprehensive logging and monitoring
- Full configuration management
**Safety Features**
- Paper trading by default (no real money at risk)
- Multiple layers of risk management
- Emergency stops and circuit breakers
- Data validation and error handling
**Easy to Use**
- Simple command-line interface
- Quick start script (`run.py`)
- Comprehensive documentation
- System testing capabilities
## Quick Start Guide
### 1. Install Dependencies
```bash
pip install -r requirements.txt
```
### 2. Configure API Keys
Copy `.env.template` to `.env` and add your Alpaca paper trading API keys:
```bash
cp .env.template .env
# Edit .env with your API credentials
```
### 3. Test the System
```bash
python test_system.py
```
### 4. Run Backtesting
```bash
python main.py --mode backtest
```
### 5. Start Live Paper Trading (when ready)
```bash
python main.py --mode live
```
Or use the interactive menu:
```bash
python run.py
```
## Project Structure Overview
```
trading/
├── main.py # 🚀 Main application entry point
├── run.py # 🎯 Interactive quick start menu
├── test_system.py # 🧪 System verification tests
├── requirements.txt # 📦 Python dependencies
├── .env.template # 🔐 Environment variables template
├── README.md # 📖 Comprehensive documentation
├──
├── config/ # ⚙️ Configuration Management
│ ├── __init__.py
│ └── trading_config.py
├──
├── src/ # 🏗️ Core System Components
│ ├── __init__.py
│ ├── data_handler.py # 📊 Market data operations
│ ├── strategy.py # 🎯 Trading strategy logic
│ ├── risk_manager.py # 🛡️ Risk management system
│ ├── trading_engine.py # ⚡ Core trading engine
│ └── logger_setup.py # 📝 Logging configuration
├──
└── logs/ # 📋 Log files (created automatically)
```
## Key Improvements from Original Code
### 🏗️ **Architecture**
- **Before**: Single monolithic files
- **After**: Modular, object-oriented design with clear responsibilities
### 🛡️ **Safety**
- **Before**: Hardcoded credentials, no risk management
- **After**: Environment variables, comprehensive risk controls, paper trading default
### 📊 **Maintainability**
- **Before**: Mixed concerns, hard to modify
- **After**: Clean interfaces, easy to customize and extend
### 🔧 **Configuration**
- **Before**: Hardcoded values throughout code
- **After**: Centralized configuration, environment-based settings
### 📝 **Monitoring**
- **Before**: Basic print statements
- **After**: Professional logging system with multiple log files
### 🚀 **Usability**
- **Before**: Required code modification to run
- **After**: Command-line interface, interactive menu, easy deployment
## Next Steps
1. **Review Configuration**: Check `config/trading_config.py` for strategy parameters
2. **Test Thoroughly**: Run extensive backtests before live trading
3. **Monitor Closely**: Watch logs and performance metrics
4. **Start Small**: Use paper trading and small position sizes initially
5. **Iterate**: Adjust parameters based on performance
## Safety Reminders
- ⚠️ **Always use paper trading first**
- ⚠️ **Never disable risk management**
- ⚠️ **Monitor the system regularly**
- ⚠️ **Start with small position sizes**
- ⚠️ **Understand the risks involved**
## Support
- Check `README.md` for detailed documentation
- Review log files in `logs/` for troubleshooting
- Test with `test_system.py` to verify setup
- Use `--help` flag for command-line options
---
**Congratulations!** You now have a professional-grade automated trading system that's:
- ✅ Safe (paper trading default)
- ✅ Modular (easy to modify)
- ✅ Monitored (comprehensive logging)
- ✅ Tested (backtesting capabilities)
- ✅ Production-ready (proper architecture)
Happy trading! 📈