trading-algo/PROJECT_OVERVIEW.md
Gal Podlipnik 69462cf3e0 first
2025-07-17 02:30:21 +02:00

4.1 KiB

Project Setup Complete! 🎉

What You Now Have

Professional Trading System Structure

  • Modular, maintainable, and scalable architecture
  • Clear separation of concerns (data, strategy, risk, execution)
  • Comprehensive logging and monitoring
  • Full configuration management

Safety Features

  • Paper trading by default (no real money at risk)
  • Multiple layers of risk management
  • Emergency stops and circuit breakers
  • Data validation and error handling

Easy to Use

  • Simple command-line interface
  • Quick start script (run.py)
  • Comprehensive documentation
  • System testing capabilities

Quick Start Guide

1. Install Dependencies

pip install -r requirements.txt

2. Configure API Keys

Copy .env.template to .env and add your Alpaca paper trading API keys:

cp .env.template .env
# Edit .env with your API credentials

3. Test the System

python test_system.py

4. Run Backtesting

python main.py --mode backtest

5. Start Live Paper Trading (when ready)

python main.py --mode live

Or use the interactive menu:

python run.py

Project Structure Overview

trading/
├── main.py              # 🚀 Main application entry point
├── run.py               # 🎯 Interactive quick start menu
├── test_system.py       # 🧪 System verification tests
├── requirements.txt     # 📦 Python dependencies
├── .env.template        # 🔐 Environment variables template
├── README.md           # 📖 Comprehensive documentation
├── 
├── config/             # ⚙️ Configuration Management
│   ├── __init__.py
│   └── trading_config.py
├── 
├── src/                # 🏗️ Core System Components
│   ├── __init__.py
│   ├── data_handler.py     # 📊 Market data operations
│   ├── strategy.py         # 🎯 Trading strategy logic
│   ├── risk_manager.py     # 🛡️ Risk management system
│   ├── trading_engine.py   # ⚡ Core trading engine
│   └── logger_setup.py     # 📝 Logging configuration
├── 
└── logs/               # 📋 Log files (created automatically)

Key Improvements from Original Code

🏗️ Architecture

  • Before: Single monolithic files
  • After: Modular, object-oriented design with clear responsibilities

🛡️ Safety

  • Before: Hardcoded credentials, no risk management
  • After: Environment variables, comprehensive risk controls, paper trading default

📊 Maintainability

  • Before: Mixed concerns, hard to modify
  • After: Clean interfaces, easy to customize and extend

🔧 Configuration

  • Before: Hardcoded values throughout code
  • After: Centralized configuration, environment-based settings

📝 Monitoring

  • Before: Basic print statements
  • After: Professional logging system with multiple log files

🚀 Usability

  • Before: Required code modification to run
  • After: Command-line interface, interactive menu, easy deployment

Next Steps

  1. Review Configuration: Check config/trading_config.py for strategy parameters
  2. Test Thoroughly: Run extensive backtests before live trading
  3. Monitor Closely: Watch logs and performance metrics
  4. Start Small: Use paper trading and small position sizes initially
  5. Iterate: Adjust parameters based on performance

Safety Reminders

  • ⚠️ Always use paper trading first
  • ⚠️ Never disable risk management
  • ⚠️ Monitor the system regularly
  • ⚠️ Start with small position sizes
  • ⚠️ Understand the risks involved

Support

  • Check README.md for detailed documentation
  • Review log files in logs/ for troubleshooting
  • Test with test_system.py to verify setup
  • Use --help flag for command-line options

Congratulations! You now have a professional-grade automated trading system that's:

  • Safe (paper trading default)
  • Modular (easy to modify)
  • Monitored (comprehensive logging)
  • Tested (backtesting capabilities)
  • Production-ready (proper architecture)

Happy trading! 📈